
Clip, Connect, Clone: Combining Application Elements
to Build Custom Interfaces for Information Access

Jun Fujima 1∗ Aran Lunzer 1 Kasper Hornbæk 2 Yuzuru Tanaka 1

1Meme Media Laboratory
Hokkaido University

Sapporo 060-8628, Japan
{fujima, aran, tanaka}@meme.hokudai.ac.jp

2Natural Sciences ICT Competence Centre
University of Copenhagen

2100 Copenhagen Ø, Denmark
khornbaek@nik.ku.dk

ABSTRACT
Many applications provide a form-like interface for request-
ing information: the user fills in some fields, submits the
form, and the application presents corresponding results.
Such a procedure becomes burdensome if (1) the user must
submit many different requests, for example in pursuing a
trial-and-error search, (2) results from one application are to
be used as inputs for another, requiring the user to transfer
them by hand, or (3) the user wants to compare results, but
only the results from one request can be seen at a time. We
describe how users can reduce this burden by creating custom
interfaces using three mechanisms: clipping of input and re-
sult elements from existing applications to form cells on a
spreadsheet; connecting these cells using formulas, thus en-
abling result transfer between applications; and cloning cells
so that multiple requests can be handled side by side. We
demonstrate a prototype of these mechanisms, initially spe-
cialised for handling Web applications, and show how it lets
users build new interfaces to suit their individual needs.

Categories and Subject Descriptors: H.5.2 [User Inter-
faces]: Graphical User Interfaces (GUI), Interaction Styles;
D.2.12 [Interoperability]; H.5.4 [Hypertext/Hypermedia]:
Navigation, User Issues

Additional Keywords and Phrases: customized informa-
tion access, end-user programming, parallel exploration

1 INTRODUCTION
This paper describes a prototype that supports end-users in
reducing the burden in certain kinds of information access.
The prototype lets users create custom interfaces by clipping,
connecting, and cloning elements from existing applications.
It is currently specialised to the handling of Web applica-
tions, yet the underlying mechanisms are also suitable for
applications of other kinds.

∗The first author carried out much of the implementation reported here
during a visit in 2003 to the University of Copenhagen, where the second
author was then working.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
UIST ’04, October 24–27, 2004, Santa Fe, New Mexico, USA.
Copyright © 2004 ACM 1-58113-957-8/04/0010. . . $5.00.

The motivation for this work arises from three kinds of chal-
lenge that are commonly observed in the use of applications
for information access.

First, it can be laborious for users to find the interface ele-
ments that are of interest. For example, the input fields for
a Web application may be on a page that also includes many
other items; similarly, the page of results delivered by that
application may include details that the user does not need.
If the application is used repeatedly, even the effort of lo-
cating the relevant input fields and the relevant results can
become a burden. We would like users to be able to create
simplified versions of the applications they are using.

Second, users often want further information related to the
results they have found. This may involve using results from
one application as inputs to another. For example, in plan-
ning an evening out, a user may invoke one Web application
to discover what films are currently showing, choose a film,
see which cinemas are showing it, look up the address of a
cinema to feed into a transport enquiry, and so on. Repeating
all these steps for each of several films would be hard work;
it would be preferable if the user could create connections
that automatically transfer the data between applications.

Third, the results obtained from one request can have in-
creased value when seen in the context of other results. For
example, the film-goer might want to consider a variety of
cinemas and screening times, in order to compare the cost
and convenience of getting to each one. However, comparing
results is difficult if each request causes the previous result
to disappear from view. We would like to help users handle
alternative requests side by side, so that it becomes easy to
submit many requests and to compare their results.

This paper extends an earlier poster presentation [7] in de-
scribing C3W (Clip, Connect and Clone for the Web), a pro-
totype that provides integrated support for addressing these
three challenges. We show how C3W allows a user to create a
custom information-access interface based on one or several
Web applications, then use this interface to view and control
many alternative requests side by side. Providing support for
such side-by-side handling is the central theme of our work
on Subjunctive Interfaces [11, 12, 14]; C3W represents a sub-
stantial advance in this work, being the first system to make
subjunctive-interface facilities available for a whole class of
applications that normally handle just one request at a time.

175Volume 6, Issue 2

Section 2 demonstrates our prototype and explains its capa-
bilities. The facilities needed to generate this kind of system
are discussed in Section 3, while Section 4 places our work in
the context of prior research. The contributions are summed
up in Section 5, where we also discuss how to move beyond
the limitations of the existing prototype.

2 EXAMPLES AND EXPLANATIONS
Below we explain the main features of C3W through two
examples.

2.1 A Useful Union of Two Applications
Suppose an investor in Japan wants to look up the stock price
of US-quoted companies, but to see them in Japanese yen
rather than dollars. Perhaps no single Web application offers
such a lookup, but the investor knows that the CNN Money
site offers a stock-price lookup in dollars, while Yahoo! has
a currency conversion page that can certainly deal with dol-
lars and yen. Furthermore, suppose the investor wants to see
several companies’ prices at the same time.

Figure 1 shows an interface, built using C3W, that fulfils
these needs. We will now describe the three main techniques
used in building it.

2.1.1 Clipping This interface was assembled from two pre-
viously created, simpler interfaces: one for the stock-price
lookup and one for the currency conversion. Figure 2 shows
how elements were initially clipped from the Yahoo! site;
Figure 3 shows these clipped elements arranged by the user
on what we call a C3Sheet, along with a second C3Sheet for

Figure 1: A user-built interface that takes company
stock codes as input (in the cells marked A), and finds
their dollar prices (B) and the equivalent yen amounts
(E). Cells A and B were created by clipping elements
from a stock-price lookup application; C, D and E were
clipped from a currency-exchange application. The
user connected these applications by giving C a for-
mula that copies the value in B. The user has also
cloned cell A to deal with three cases in parallel, which
has caused the automatic cloning of all cells that de-
pend on A. Each set of clones uses the same layout
and colour-coding, to emphasise their correlations –
for example, the current dollar price of NTT is $23.49,
and the current value of this many dollars is ¥2,550.

the CNN lookup. All the cells on these sheets act as por-
tals (in the sense of [18]) onto the Web pages from which
they were clipped. Thus the top three cells on the currency-
conversion sheet (on the left in Figure 3) retain their roles as
input devices, so that specifying a new value in any one will
cause a re-evaluation of the Yahoo! conversion and will up-
date the bottom text field to show the new converted amount.

Note that the cells need not be clipped in the order in which
they are encountered. In particular, if the user had only de-
cided to wrap this application after having obtained some re-
sult, he or she could have clipped the result field first, and
then gone back to the previous page to clip the parameters
that led to it.

Each of the C3Sheets in Figure 3 works as a reusable applica-
tion, that could be saved on a user’s local disk or distributed
to other users for their immediate use. This illustrates how
Clipping enables the creation of simplified versions of an ap-
plication.

↓ (enter amount and press ‘Convert’)

Figure 2: Clipping elements from a currency conver-
sion application. At the top is the default input page
for the conversion, on view in C3W’s specialised Web
browser. Holding down the Alt key brings up a red rect-
angle that follows the mouse to highlight the region
of the nearest surrounding HTML tag; this indicates
which portion of the page will be clipped if a mouse
drag is started. Here the user has started dragging
the conversion input field, to drop it on a C3Sheet. Af-
ter also clipping the drop-downs that specify the source
and destination currencies, the user enters a sample
dollar amount and presses the ‘Convert’ button. The
lower part shows the clipping of the converted-amount
text from its place on the result page.

176

Figure 3:
Left: C3Sheet with the elements clipped in Figure 2.
Right: C3Sheet for a stock-price lookup. The cells’ dif-
ferent font sizes reflect the visual nature of the clipping
operation; these are the fonts used in the elements
that were clipped. However, each cell created from
a Web-page element is in essence a fully functioning
Web browser, so the user is free to adjust the font size.

2.1.2 Connecting The next stage in building the example
in Figure 1 is to create a combination in which the two appli-
cations are connected. To do this, the user starts with another
empty C3Sheet and repeats the clipping process – this time
clipping the cells from the existing C3Sheets. Notice that
there is no need to clip the source-currency selector if the
desired currency is always the same; the user must simply
ensure that the selector is set to that currency when the other
cells are clipped. The cells may be laid out like this:

Here the upper two cells (A and B) come from the stock-price
application, while the lower three are from the currency con-
version. The user has already taken the final step necessary
in connecting the applications together: establishing that the
conversion-amount cell (C), rather than its previous status as
a user input field, is to take its value from cell B. This is done
by adding the simple formula ‘=B’ to cell C. Now whenever
B’s value changes, as the result of a new stock-price lookup,
C is automatically updated and a currency conversion is trig-
gered. If the user wanted instead to convert the price of 100
shares, this could be done by making C’s formula ‘=B*100’.

This C3Sheet also works as a reusable application, accepting
a stock code in cell A and producing a converted price in E.
It could be configured to re-evaluate automatically every few
minutes to reflect the latest stock price and conversion rate.
In addition, because it includes the destination-currency se-
lector, it will perform conversions into whichever currency
the user chooses; for example, a Danish investor might want
Danish Krone conversions.

This illustrates how Connecting enables the automated trans-
fer of results from one application to another.

2.1.3 Cloning The third stage in our example is when the
user decides to track several companies’ stock prices in par-
allel. The interface shown above can be extended to support
this, by cloning the relevant cells.

Using a pop-up menu on cell A, the user asks for an ad-
ditional scenario, and then one more. This causes A to be
cloned twice, with the new instances appearing directly be-
neath the original and initially holding the same stock code.
At the same time, cloning automatically takes place for every
cell that depends on the stock code – namely the dollar price
(B), the input to the currency conversion (C), and the conver-
sion result (E). Each cell that is cloned shows its instances in
the same layout, and with the same coloured borders. Thus
when the user types a new stock code into any instance of
cell A, it is easy to tell where the results for that stock will
appear.

A cell that has not been cloned remains as a single instance,
that participates in all scenarios. An example of this is the
single instance of the destination-currency selector in Fig-
ure 1. Selecting a new currency will cause all scenarios to
be re-evaluated – for example, one could switch all the con-
versions simultaneously to Euros. Alternatively, the user can
specify that this cell should also have separate instances for
each scenario; then each scenario could be given a distinct
setting, for example to convert the NTT price into Yen, the
KLM price into Euros, and the ICI price into Pounds.

This illustrates how Cloning enables side-by-side handling
of requests that normally can only be handled separately.

2.2 A More Ambitious Combination
We now present a more complex example. Consider some-
one who lives in Copenhagen and likes to make use of the
city’s many cinemas. It would be useful for this person to
have an application that helps in planning a film outing. The
C3Sheet shown in Figures 4 and 5 was built by clipping from
three Web applications with the following facilities:

1. A personal page that lists favourite places and has links to
pages describing them. It includes a drop-down selector
listing cinemas by their familiar names; the user can select
a cinema then navigate to a description page containing the
cinema’s official name and address.

2. The film section of a large Copenhagen events site, that
includes a search box into which the user can enter the
name of a film currently on release and obtain a page with
a description of the film and links to further details. One
link leads to a page detailing where and at what times the
film is being screened.

3. A travel-planning site allows a user to specify start and des-
tination addresses, and the proposed travel time (either for
arrival or departure). The site then presents one or more
recommended itineraries.

The user wants to be able to select a film, a cinema, and
the earliest acceptable screening time; the application should
then find the first satisfactory screening of that film at the
chosen cinema, and submit an itinerary request from the
user’s home to the cinema, arriving fifteen minutes before
the film starts. A combination that achieves this is shown in
Figure 4. Figure 5 then shows a simple example of cloning:
the user has created a further scenario to handle a second film
name, and can now work with the two scenarios in parallel.

177Volume 6, Issue 2

Figure 4: Using three Web applications in combination to provide travel information for film outings. The cell relationships
established by clipping from the pages shown as thumbnails at the top are as follows: selecting a cinema in the list in cell A
triggers navigation that places the cinema’s name and address in B and C respectively; entering a film name in D causes
E to hold a list of that film’s Copenhagen-area screenings for today and tomorrow; cells G, H and I serve as start address,
destination and arrival time for a travel enquiry that gives an itinerary in J. Cell F is an independently created cell in which
the user specifies the earliest desired film start time. The applications have been connected by giving cell H (destination)
a formula that copies the cinema address from C, and cell I (arrival time) a formula based on a user-written function for
finding in cell E the first screening time relevant to cinema name B and time F. Any change to the cinema choice in A, film
name in D, earliest start time in F, or starting address in G will trigger re-evaluation leading to a new itinerary.

The two examples described in this section illustrate the po-
tential capabilities of C3W. In the following section we pro-
vide some details of C3W’s implementation, as guidelines
for practitioners wishing to develop similar systems.

3 IMPLEMENTATION REQUIREMENTS
Many software platforms and toolkits could be used to im-
plement a system supporting the operations shown above.
C3W, which primarily addresses Web applications, is built
on the PlexWare platform (K-Plex, Inc., San Jose and Tokyo;
www.kplex.com). Before we illustrate how clipping, con-
necting and cloning are supported in C3W, we will explain
briefly some implications of choosing this platform.

PlexWare is an implementation of the IntelligentPad meme-
media architecture [22, 21]. In IntelligentPad, information
and processing components are represented as 2D visual ob-
jects called pads. Each pad holds its state data in named
slots, which also form its interface for functional connection
to other pads. By the direct-manipulation pasting of one pad
onto another, a user defines a child-parent relationship be-

tween them, and can also connect one slot in the child to one
slot in the parent. This simple form of linkage is enough
to enable pad compositions to act as compound multime-
dia documents, or hierarchically structured applications. The
compositions are also easy to decompose – again by direct
manipulation – in order to be reused or re-edited.

Within PlexWare, many powerful Microsoft controls – such
as Internet Explorer (IE) and Excel – have been encapsulated
as pads. Through our collaboration with K-Plex we had ac-
cess to the source code involved in such encapsulation, and
were able to modify this code to extend the capabilities of the
encapsulated controls. In addition, though not described in
detail in this paper, we were able to implement mechanisms
for extracting and reusing elements within general pad com-
positions, enabling us to explore how non-Web applications
may also be included in C3Sheet constructions.

3.1 Clipping
The activity that we call clipping is the fundamental mecha-
nism by which a user extracts elements from existing appli-

178

Figure 5: The composite Web application shown in Figure 4, after the user has cloned cell D. Cloning has been propagated
automatically to all the cells that depend directly or indirectly on D: the screening times (E), derived arrival time (I) and the
itinerary (J). The user may now wish to experiment by entering alternative film names in either instance of cell D, or could
change some other input parameter and obtain new timings and itineraries for both films simultaneously.

cations for use in a custom interface. Any implementation
of clipping requires detailed cooperation between the exist-
ing applications and the interface-construction environment.
The necessary components are as follows:

1. An interaction mechanism by which the user identifies an
element that is to be clipped, and installs it as a cell in the
custom interface.

Our support for clipping from Web pages is implemented
by cooperation between an IE pad, with some extensions
that we added, and a C3Sheet object. The extended IE
supports the extraction of any Web-page region that can be
expressed using an HTML-Path [23]. An HTML-Path is
a specialisation of an XPath expression; it can specify any
self-contained HTML tag (such as an input field, table row,
or even a whole document), and also supports regular ex-
pressions for defining portions of text nodes. Once the user
has steered an interactive highlight to the desired region of
the page, that region can be dragged and dropped onto a
C3Sheet to define a new cell.

2. A visual representation for the custom interface and the
cells within it, where each cell can exhibit the behaviour of
its source region in the original application.

Earlier we mentioned that each cell in C3W is in essence a
fully functional Web browser – a Web-browsing pad – that
works as a portal onto the region of the page from which
the element was clipped. Therefore the cell has the in-
teraction behaviour that the element would normally have
within the full Web page: input fields, menus, buttons and
the like all work as usual, as do display elements.

3. A way of capturing the dependency relationships between
separately clipped cells, so that changes in input values re-
sult in re-evaluation of results.

The most complex aspect of clipping is the capture of de-
pendency relationships between cells. Cells in C3W are
typically extracted from navigations that span multiple Web
pages, and carry detailed information enabling the C3Sheet
to determine their mutual relationships and to re-execute
the navigation when necessary.

We now give further details of the processes that support clip-
ping in C3W.

3.1.1 Capturing the Dependency Relationships Between El-
ements As the user navigates using our browser, a naviga-
tion path of the following form is recorded:

The path is a sequence of steps representing encountered
documents. A step consists of the URI of the document, a
‘predicate’ specifying any conditions that the user has speci-
fied on that document, and ‘targetElement’ specifying the in-
teraction that took the browser to the next document (if any).
The predicate conditions correspond to values specified in
elements such as INPUT or SELECT; the targetElement is
typically an A (anchor) or FORM. All these attributes are
recorded using HTML-Path expressions, as described above.

179Volume 6, Issue 2

When the user clips elements from the documents, the path
is augmented with ‘extract’ attributes. The following figure
shows how navigation actions within the Yahoo! currency-
conversion application contribute to the recorded path, and
a specific example of the attribute values recorded when the
user clips the entry field for the starting-currency amount on
the top page, puts the value ‘10’ into that field, presses the
Convert button (to submit the form), then clips the converted
amount on the result page:

Whenever a user drops a new element on a C3Sheet, it brings
with it the full multi-step navigation path describing how it
was extracted. The C3Sheet compares this path against the
paths for existing cells, and thus determines their dependency
relationships. In our Yahoo! example the conversion-result
cell becomes a dependant of the currency-amount cell, with a
single navigation step between them. If a currency-selection
field were also extracted as a cell, the result would be a de-
pendant of that cell too.

Note that this analysis of navigation paths is not affected by
the order in which the cells are created. This is why, as
mentioned in Section 2.1.1, a user need not decide in ad-
vance which navigations he or she will want to reuse, but
can do so in retrospect – i.e., after having seen some ini-
tial results. In such a case the user could clip the desired
result elements, then backtrack to earlier pages and clip the
input elements. By the same token, C3W can support clip-
ping from a branched navigation – for example, pursuing two
different links from a film-information page to clip both actor
information and local reviews.

3.1.2 Replaying Derivations Later, when a new value is
supplied for some cell that is acting as an input, C3W must
replay the appropriate navigation steps to obtain the results
for any dependent cells. For this it uses an instance of Web
browser that it holds behind the scenes, iteratively executing
the following procedure for each navigation step:

1. Set up any conditions specified by predicate attributes.

2. Set up any values connected to input cells; propagate any
values connected to output cells.

3. Access the element specified by the targetElement attribute,
to jump to the next step. This jump goes to a URI that de-
pends on the user’s input values at the time of replay, and
may therefore override the URI attribute value originally
recorded for each step.

Note that, in contrast to the formulas specified by users to
connect applications, the details of the dependencies between
input and result cells extracted from a given application are
typically hidden. To help users understand these hidden rela-
tionships it would be possible to create a dummy formula for
each result cell, revealing which other cells it depended on
and perhaps some clues about the kind of derivation involved
(e.g., whether it is a Web navigation or a pad-based calcu-
lation). These dummy formulas could also contribute to a
global mechanism for helping the user to trace dependencies
through the sheet.

Although the specifics for clipping from other kinds of ap-
plication are different, the facilities required are equivalent.
For example, if the user is creating cells by clipping pads
from within large IntelligentPad composites, then instead of
a Web navigation path each cell includes a precise descrip-
tion of its pad’s position within the hierarchical structure of
the source composite; instead of holding a Web browser be-
hind the scenes to re-evaluate the navigation, the C3Sheet
must maintain a working copy of the relevant parts of the
composites.

3.2 Connecting
Connecting refers to applying formulas to cells, so that deriva-
tions normally driven by direct user input can instead be
driven by changes in the values of other cells.

Formulas in the C3W prototype are handled by a hidden in-
stance of Excel spreadsheet. A C3Sheet cell with label x cor-
responds to the cell at location x1 on the Excel sheet – i.e.,
the cell labelled C is mapped to C1, and so on. When the user
adds a formula to a C3Sheet cell, the formula is first scanned
for references to other cell labels, these references are con-
verted to spreadsheet cell locations, and the derived formula
is then attached to the appropriate cell on the spreadsheet.

A cell on a C3Sheet always corresponds to some clipped unit
of HTML, including its enclosing tag. However, in transfer-
ring values between the C3Sheet and Excel a distinction is
made between two types of cell: those whose essential con-
tent can be characterised as a simple character string, and
those that have a more complex, typically nested, structure.
For the former category, Excel only handles the inner con-
tent string. This applies not just to simple textual-result cells
and input fields, but also to cells whose main function de-
pends on a single string property – such as the HREF prop-
erty of an A (anchor) tag, or the SRC property of an IMG (im-
age) tag. Thus for simple elements a user can write simple
formulas, such as ‘=B*100’ for passing a stock-price result
into a currency-conversion input, while complex elements
can be handled using Excel’s full macro-language capabil-
ities – for example to realise the specialised string-handling
for the ‘filmtime’ function shown in Figure 4.

180

In the current prototype, the distinction between simple and
complex cell types is made on the basis of hard-coded rules.
However, realising that there will be exceptions, in the fu-
ture we may make it a user-selectable option. Meanwhile we
are considering what kind of built-in function library could
help users build formulas for complex structure analysis, and
are also examining how to incorporate interactive, direct-
manipulation techniques that will let users identify elements
within structured data without having to write code.

3.3 Cloning
The cloning facilities are based on our work on Subjunc-
tive Interfaces [11, 12, 14]. Computer users often want to
compare alternative scenarios, but few applications provide
good support for the side-by-side viewing that would facili-
tate such comparison; equipping an application with a sub-
junctive interface allows users to set up multiple scenarios,
then view and control those scenarios in parallel.

C3W’s support for parallel viewing and control of scenarios
is derived from the widget-multiplexer approach [13]. Using
widget multiplexers involves reserving a dedicated region of
the computer screen for each widget that appears in the nor-
mal, single-scenario application interface. As the user cre-
ates additional scenarios, each multiplexer displays simulta-
neously, side by side, how its widget would appear in each
scenario. In general, if there are n scenarios then each multi-
plexer displays n copies of its widget. The exception is when
a widget would have identical appearance in all scenarios, in
which case only a single display is needed. All multiplex-
ers lay out their scenario-specific displays in the same way;
by the principles of ‘small multiples’ visualisations [26], this
helps users to locate all the information that comprises each
scenario.

The cloning facilities of C3W work as follows:

• The user can create a new scenario by cloning some cho-
sen input cell. This introduces an independent calculation
passing through all the cells on the sheet. However, be-
cause formula-based derivation is uni-directional, only the
chosen cell and those cells that depend on it need to pre-
pare and show multiple displays. The other cells still have
the same value in every scenario.

Figure 6: The use of CellMultiplexers to support
cloning in a single-layer composite pad. On the left
is the basic composite pad; on the right is a setup for
two scenarios. The child pads connected to slots #A
and #B have both been cloned, and the clone pairs are
connected to the parent through separate cooperating
CellMultiplexers. When the CellMultiplexers are han-
dling scenario 1, the parent is connected (indirectly) to
the scenario-1 instances of its children; when handling
scenario 2, the other instances are connected.

• Entering a new value in one display of a cloned cell will
only affect the scenario corresponding to that display. En-
tering a new value in an uncloned cell will affect all sce-
narios simultaneously.

• When multiple scenarios are on view, the user can choose
to clone a previously uncloned cell so that it has separate
displays for each scenario. Any cells that depend on the
newly cloned cell, but were not cloned before, will now be
cloned.

• The user can delete a scenario. This removes the clones
associated with that scenario from all cloned cells.

The fact that C3W is implemented on the PlexWare platform
as a set of cooperating pads allows us to support multiplex-
ing in a particularly straightforward way. Each cell is a pad,
that is a child of the C3Sheet pad and has a slot connection
to a cell-specific slot within the parent. For each cloned cell,
we introduce between the cell and the parent C3Sheet a spe-
cialised pad called a CellMultiplexer. The CellMultiplexer is
responsible for creating and deleting clones of the cell, and
for time-multiplexing the connection between a cell’s vari-
ous clones and the C3Sheet. Figure 6 illustrates the principle
of a CellMultiplexer, showing two child pads that are each
cloned to support two scenarios.

The various CellMultiplexers within a single application (i.e.,
attached to the same C3Sheet) coordinate their displays so
that the clones belonging to a given scenario all have the
same colour of border, and the scenarios are laid out in the
same way. The colouring and layout policy is a simplified
version of that described in [14]. As seen in the examples
in Section 2, cell clones in C3W have the same size as their
original cell, which imposes a practical limit on the number
of clones – especially for large cells, such as the itinerary in
Figures 4 and 5. We are working to improve this and other
aspects of the usability of the cloning facilities.

4 RELATED WORK
4.1 Automating Access to Web Applications
Clipping elements from Web applications relates to the highly
active research area on automated extraction of information
from the Web.

4.1.1 Recording and Replaying Web Interaction Much us-
age of the Web is repetitive; users often want to revisit pages
that they have accessed before. Many projects start from the
observation that bookmarks, the basic mechanism for sup-
porting revisitation, are not enough. Hunter Gatherer [19] is
one such project, supporting users in collecting not just links
to pages that they want to revisit, but copied portions of those
pages. The copies can include text, images, links, or other ac-
tive components such as forms; the active components retain
the behaviour that they have within the original Web pages.

One benefit of being able to copy just selected regions within
pages is that the user can construct a simplified interface, free
from the clutter of surrounding elements that are irrelevant to
that user or to a particular instance of use. This was one goal
in the development of WebViews [6], in allowing users to
create customised views suited to small-screen devices, and
also of WinCuts [20], which lets users create live copies of
arbitrary sub-regions of general windowed applications.

181Volume 6, Issue 2

WebViews is not only a system for replicating components
of Web pages; like the WebVCR [1] system that it extends,
its key feature is so-called smart bookmarks that point not
to a single location within the Web, but encapsulate a series
of Web-browsing actions. Smart bookmarks can therefore be
used to record hard-to-reach Web pages, that have no fixed
URIs and can only be reached by navigation. However, the
decision to make a smart bookmark must be taken before the
user starts the navigation that is to be recorded; this is in
contrast to C3W’s support for extracting elements retrospec-
tively, which we have not found in other published work.

When a user records a smart bookmark, he or she can indi-
cate if some field in a form (e.g., a password) is to be re-
quested at playback time, rather than stored with the book-
mark. However, in essence the job of a smart bookmark is to
arrive at the destination Web page and to deliver to the user’s
display either the whole page or some chosen parts thereof;
intermediate pages are not seen. In this respect C3W offers
greater flexibility, since the user can clip arbitrary regions of
any page encountered during the course of a navigation, ei-
ther to reveal intermediate results or to capture inputs. And
because each clipped region is treated as a portal [18] onto
the original Web page, inputs to be used during replay can be
based on arbitrary form widgets – including menus, check-
boxes and the like – rather than just textual input fields.

For presenting results, too, the portal approach has some ben-
efits. For example, in the cinema interface shown in Fig-
ures 4 and 5, the carefully designed itineraries provided by
the travel-planning application can be viewed in full detail.
However, if the user wants to use the contents of such a semi-
structured display as a source of values for further process-
ing, he or she must typically write a complex extraction func-
tion – as exemplified by the ‘filmtime’ function in the same
application. In such a case, it may be preferable for the sys-
tem to include some automated facilities for formalising the
semi-structured content.

4.1.2 Formalised Extraction of Content Many researchers
are working on how to extract structured data, suitable for
storage in databases or processing by agents, from Web pages
that were designed for human readers; [9, 10] are recent sur-
veys of this area.

Lixto [3] and InfoBeans[2] are two research systems that,
like C3W, aim to define what data is to be extracted by gen-
eralising from example selections made by a human user.
The goal is a definition that will extract equivalent infor-
mation from Web pages with different contents, and perhaps
with different structures – because information providers on
the Web often make changes to their pages (such as adding
or removing menu items, or slightly altering how items are
grouped) that, while causing no difficulty for human readers,
can easily confuse a formal system. The HTML-path expres-
sions used by C3W are not robust against such changes in
page structure. The XPath expressions used by WebViews
include additional conditions that help to make the extrac-
tion more robust, and the system also uses various heuris-
tics to work around common kinds of structural change. The
scripts used by InfoBeans can incorporate context, landmark
and characterisation conditions to increase their robustness;

if a script still fails to locate suitable content, the system in-
cludes TrIAs (Trainable Information Agents) that can start
a dialogue with the current user to obtain further example-
based training.

However, no amount of heuristics or training can guarantee
to find the intended elements in the face of arbitrary changes.
Here again, the fact that C3W encourages the display of in-
termediate results rather than hiding them in a processing
pipeline can be of some benefit. For example, if some change
in a Web resource causes values that are normally numeric
to be replaced by strings, our portal-based clipping at least
increases the likelihood that the user will see that something
has gone wrong, rather than being puzzled by (or, worse, fail-
ing to notice) the outcome of strange derived values flowing
through an unseen pipe.

4.2 Passing Information Between Applications
In C3W, separate Web applications can be connected with
the help of formulas on input elements. Other systems for
working with Web applications offer alternative approaches:
Lixto provides a visual patch-panel mechanism; InfoBeans
allow the user to define ‘channels’ for each InfoBox com-
ponent, which are then used to connect them; earlier work
on wrapping Web applications as pads within an Intelligent-
Pad environment [8] allowed the applications to be connected
using the pads’ slot-based communication mechanism. In
Snap [17], a system supporting construction of customised
visualisations, users connect visualisation components by us-
ing dialog-box mechanisms to set up parameterised queries
between them.

The cell-and-formula approach of C3Sheets is based on the
spreadsheet model; other well known spreadsheet-based sys-
tems include Forms/3 [4], Information Visualization Spread-
sheets [5], and C32 [15]. In general, such projects selectively
adopt or abandon various features of what could be called the
traditional spreadsheet. The use of formulas in C3Sheets, for
example, conforms to the tradition that each formula deter-
mines the value of just one cell. On the other hand, our im-
plementation is not alone in breaking free of the restriction
that cells should contain only text or numbers, or the idea that
cells should be positioned and named according to a tabular
grid.

4.3 Handling Multiple Scenarios in Parallel
As explained in Section 3.3, the cloning mechanisms in C3W
reflect our interest in supporting the viewing, comparison and
update of alternative scenarios. This applies not only to the
kind of information exploration addressed in this paper, but
also in design, such as when investigating the influence of
image placement on the layout of a document, or in simula-
tion, such as when testing how alternative population growth
scenarios would affect a country’s economy. But such com-
parison is seldom well supported; Terry and Mynatt [24]
speak of the ‘single-state document model’ of most of to-
day’s applications, and the implicit barrier that this imposes
on a user who wants to explore and compare alternatives. In
addressing this issue for simple design tasks, Terry et al. [25]
demonstrate an interface that lets a user set up and work with
multiple designs in parallel, although their interface is lim-
ited in its support for viewing scenarios side by side.

182

In the domain of Web browsing we have found little work
supporting interactive comparison of scenarios. One isolated
example is the Comparative Web Browser (CWB) [16], an
interface that offers comparison and synchronised browsing
between similar Web pages. However, CWB displays the
pages in full, which makes it less scalable than the C3W ap-
proach in which the user is able to clone just chosen cells,
and where those cells may have been taken from several Web
pages.

Relative to our own previous work on subjunctive interfaces,
a key advance embodied in C3W is that the widget multiplex-
ers themselves are generic; they can handle any client that is
a cell, and in C3W a cell can contain any clipped region of a
Web page. This makes it the first system to offer subjunctive-
interface facilities for an entire class of applications.

5 CONCLUSION
We have introduced C3W, a prototype that supports users in
creating custom interfaces for accessing information through
Web applications. C3W exemplifies three mechanisms that
together help users to overcome inconveniences and restric-
tions imposed by the original applications, as follows:

1. Clipping: By drag-and-drop manipulation, a user can se-
lect and extract input and result elements from the pages
of a Web application. Placing the elements on a substrate
(a C3Sheet) turns them into cells that work as portals onto
the original Web pages; cells containing clipped input el-
ements support user input, and cells containing result ele-
ments display the corresponding results. Thus the user can
create a compact, reusable interface that excludes unnec-
essary features of the Web application.

2. Connecting: A single C3Sheet can hold input and result
cells for multiple applications. The user can define formu-
las for input cells, so that they obtain their values from the
contents of other cells. By defining formulas that refer to
the result cells of other applications, the user can create
connections between applications that were not originally
designed to work together.

3. Cloning: The user can set up multiple scenarios – i.e., dif-
ferent settings for the inputs, leading to different results –
to be shown in parallel. Each cell displays, side by side,
its contents in the various scenarios. So even if the orig-
inal application could only handle one scenario at a time,
the user can efficiently explore and compare the different
results available through that application. This also works
for applications that have been connected using formulas.

As demonstrated in this paper, even the current prototype lets
us build useful interfaces for our own needs, as well as help-
ing us to explore the wider promise of this approach. That
said, there are several areas to be addressed in going beyond
this stage of development.

First, the existing C3Sheet implementation has many inter-
face features that should be improved. We are considering
how to incorporate strategies found in other spreadsheet-like
interfaces, such as for partial automation of cell sizing and

layout, for more informative labelling of cells (including the
ability for a user to provide clarifying annotations), and for
assistance in creating formulas. We are also working to im-
prove the usability of cloning operations, and the scalability
of the cloned-cell displays.

Second, our support for Web applications can be improved
by incorporating techniques demonstrated in other projects,
such as for enhancing the robustness of element identifica-
tion in the face of changes to the underlying pages, and for
capturing a broad range of user actions across applications
of different types. Content-formalisation techniques can be
applied to help users extract richer data types from Web-page
elements for use in formulas.

Third, the broader benefits of the C3Sheet approach depend
on supporting not just Web applications and IntelligentPad
composites, but other kinds of application for information
access or derivation. Obvious candidates for inclusion are lo-
cal database applications, spreadsheets, and statistical pack-
ages. Their integration, through implementation of the facil-
ities outlined in Section 3, is likely to be achievable through
the use of existing APIs and object-broker services.

All the above development directions will naturally need to
be backed up with user evaluations. In the first instance we
are working with colleagues who rely on combined use of
Web applications in the course of their (non-computing) re-
search; our hope is to confirm that using C3Sheets will bene-
fit their work, and to improve our understanding of the facil-
ities that must be made available.

Thus we regard the work reported in this paper as initial steps
towards facilities that, while not technically hard to achieve,
could make a profound difference to how people can benefit
from the many potentially cooperating applications available
to them.

6 ACKNOWLEDGEMENTS
We are grateful to the many reviewers who provided helpful
comments. In our examples we used a stock-price applica-
tion provided by CNN (money.cnn.com/markets/), currency
exchange from Yahoo (quote.yahoo.com/m5), film lookup
from Alt om København (www.aok.dk/Copenhagen/Film/)
and itinerary search from Rejseplanen (www.rejseplanen.dk/).

REFERENCES
1. Anupam, V., Freire, J., Kumar, B., & Lieuwen, D.

Automating web navigation with the WebVCR. In
Proceedings of WWW 2000 (May 15–19, Amsterdam,
The Netherlands), ACM, NY, 2000, pp. 503–517.

2. Bauer, M., Dengler, D., & Paul, G. Instructible in-
formation agents for Web mining. In Proceedings of
IUI ’00 (Jan 9–12, New Orleans, LA, USA), ACM, NY,
2000, 21–28.

3. Baumgartner, R., Flesca, S., & Gottlob, G. Declara-
tive information extraction, Web crawling, and recur-
sive wrapping with Lixto. LNAI 2173 (Sept 2001),
21–41.

183Volume 6, Issue 2

4. Burnett, M., Atwood, J., Djang, R. W., Gottfried, H.,
Reichwein, J., & Yang, S. Forms/3: A first-order visual
language to explore the boundaries of the spreadsheet
paradigm. Journal of Functional Programming 11, 2
(Mar 2001), 155–206.

5. Chi, E. H., Riedl, J., Barry, P., & Konstan, J. Princi-
ples for information visualization spreadsheets. IEEE
Computer Graphics and Applications 18, 4 (July/Aug
1998), 30–38.

6. Freire, J., Kumar, B., & Lieuwen, D. WebViews: ac-
cessing personalized Web content and services. In Pro-
ceedings of WWW 2001 (May 1–5, Hong Kong, China),
ACM, NY, 2001, pp. 576–586.

7. Fujima, J., Lunzer, A., Hornbæk, K., & Tanaka, Y.
C3W: Clipping, Connecting and Cloning for the Web.
In Alternate Track Papers and Posters of WWW 2004
(May 17–22, New York, NY, USA), ACM, NY, 2004,
pp. 444–445.

8. Ito, K., & Tanaka, Y. A visual environment for dy-
namic web application composition. In Proceedings of
HT 2003 (Aug 26–30, Nottingham, UK), ACM, NY,
2003, pp. 184–193.

9. Kuhlins, S., & Tredwell, R. Toolkits for generating
wrappers – a survey of software toolkits for automated
data extraction from Web sites. LNCS 2591 (2003),
184–198.

10. Laender, A. H. F., Ribeiro-Neto, B. A., da Silva, A. S.,
& Teixeira, J. S. A brief survey of web data extraction
tools. SIGMOD Record 31, 2 (June 2002), 84–93.

11. Lunzer, A. Choice and comparison where the user
wants them: Subjunctive interfaces for computer-
supported exploration. In Proceedings of INTERACT
’99 (Aug 30–Sept 3, Edinburgh, Scotland), IOS Press,
Amsterdam, The Netherlands, 1999, pp. 474–482.

12. Lunzer, A., & Hornbæk, K. Side-by-side display and
control of multiple scenarios: Subjunctive interfaces
for exploring multi-attribute data. In Proceedings of
OZCHI 2003 (Nov 26–28, Brisbane, Australia), IEEE
Computer Society Press, Los Alamitos, CA, 2003,
pp. 202–210.

13. Lunzer, A., & Hornbæk, K. Widget multiplexers
for side-by-side display and control of information-
processing scenarios. In Adjunct Proceedings of
HCI International 2003 (June 22-27, Crete, Greece),
Lawrence Erlbaum Associates, Mahwah, NJ, 2003,
pp. 91–92.

14. Lunzer, A., & Hornbæk, K. Usability studies on a visu-
alisation for parallel display and control of alternative
scenarios. In Proceedings of AVI 2004 (May 25–28,
Gallipoli, Italy), ACM, NY, 2004, pp. 125–132.

15. Myers, B. Graphical techniques in a spreadsheet for
specifying user interfaces. Proceedings of CHI ’91 (Apr
27–May 2, New Orleans, LA, USA), ACM, NY, 1991,
pp. 243–249.

16. Nadamoto, A., & Tanaka, K. A comparative web
browser (CWB) for browsing and comparing web
pages. In Proceedings of WWW 2003 (May 20–24, Bu-
dapest, Hungary), ACM, NY, 2003, pp. 727–735.

17. North, C., & Shneiderman, B. Snap-together visual-
ization: Can users construct and operate coordinated
views? International Journal of Human-Computer
Studies 53, 5 (Nov 2000), 715–739.

18. Olston, C., & Woodruff, A. Getting portals to behave.
Proceedings of InfoVis 2000 (Oct 9–10, Salt Lake City,
UT, USA), IEEE Computer Society Press, Los Alami-
tos, CA, 2000, pp. 15–26.

19. schraefel, m. c., Zhu, Y., Modjeska, D., Wigdor, D.,
& Zhao, S. Hunter Gatherer: Interaction support for
the creation and management of within-web-page col-
lections. In Proceedings of WWW 2002 (May 7–11,
Honolulu, HI, USA), ACM, NY, 2002, pp. 172–181.

20. Tan, D. S., Meyers, B., & Czerwinski, M. WinCuts:
manipulating arbitrary window regions for more effec-
tive use of screen space. In Extended Abstracts of CHI
2004 (Apr 24–29, Vienna, Austria), ACM, NY, 2004,
pp. 1525–1528.

21. Tanaka, Y. Meme Media and Meme Market Architec-
tures: Knowledge Media for Editing, Distributing, and
Managing Intellectual Resources. Wiley-IEEE Press,
2003.

22. Tanaka, Y., & Imataki, T. IntelligentPad: A hyperme-
dia system allowing functional compositions of active
media objects through direct manipulations. In Pro-
ceedings of the IFIP 11th World Computer Congress
(Aug 28–Sept 1, San Francisco, CA, USA), North-
Holland/IFIP, 1989, pp. 541–546.

23. Tanaka, Y., Kurosaki, D. & Ito, K. Live Document
Framework for Re-editing and Redistributing Contents
in WWW. In Proceedings of EJC 2002 (May 27–
30, Krippen, Germany), IOS Press, Amsterdam, The
Netherlands, pp. 247–262.

24. Terry, M., & Mynatt, E. D. Recognizing creative needs
in user interface design. In Proceedings of C&C 2002
(Oct 13–16, Loughborough, UK), ACM, NY, 2002, pp.
38–44.

25. Terry, M., Mynatt, E. D., Nakakoji, K., & Yamamoto,
Y. Variation in element and action: Supporting simulta-
neous development of alternative solutions. In Proceed-
ings of CHI 2004 (Apr 24–29, Vienna, Austria), ACM,
NY, 2004, pp. 711–718.

26. Tufte, E. R. Envisioning Information. Graphic Press,
Cheshire, CT, 1990.

184

